Smart fertilizer recommendation through NPK analysis using Artificial Neural Networks / Siva, Faith

By: Contributor(s): Publication details: Nairobi : Strathmore University ; 2019Description: xiv,78pSubject(s):
LOC classification:
  • QR89.7.S583 2019
Online resources: Summary: Agricultural practices, tools and technologies have taken a new paradigm. Precision agriculture is essential to ensure that site-specific crop management is implemented, which includes soil nutrient remedies per crop requirement. Though fertilization is key in boosting productivity, there is need for analysis of the potentials and limitations of soil as a basis of recommending the correct type, quantities and application time of fertilizers to counter uncertainty in fertilizer use. The complexity of finding the optimal fertilization range greatly contributes to major inefficiencies like productivity losses, resource wastage and increased environmental pollution caused by farmers’ use of intuition, trial and error, guesswork and estimation. With these, farmers cannot accurately predict what impact their decisions will have on the resulting crop yields and the environment. Some solutions implemented for soil fertility management such as use of mobile laboratories or imported equipment have had their share of challenges such cost of implementation, ease of use and adaptation to the local environment. Other available solutions including taking soil to laboratories for testing is tedious, time consuming and inconsistent. This study proposed development of an ANN model that predicts NPK nutrient levels and recommends the best fertilizer remedy and application time based on the weather forecast. This involved use of IoT, machine learning techniques and a weather API through RAD methodology and experimental research design. Historical data of temperature, PH and NPK from KALRO Library was used to train and validate the model. The developed model achieved an RMSE 0.5 with 75% of data used for training and 25% used for testing. This is in effort to encourage precise fertilizer production for particular areas of need.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Thesis Thesis Strathmore University (Main Library) Special Collection QR89.7.S583 2019 Not for loan 10240
Total holds: 0

Agricultural practices, tools and technologies have taken a new paradigm. Precision agriculture is essential to ensure that site-specific crop management is implemented, which includes soil nutrient remedies per crop requirement. Though fertilization is key in boosting productivity, there is need for analysis of the potentials and limitations of soil as a basis of recommending the correct type, quantities and application time of fertilizers to counter uncertainty in fertilizer use. The complexity of finding the optimal fertilization range greatly contributes to major inefficiencies like productivity losses, resource wastage and increased environmental pollution caused by farmers’ use of intuition, trial and error, guesswork and estimation. With these, farmers cannot accurately predict what impact their decisions will have on the resulting crop yields and the environment. Some solutions implemented for soil fertility management such as use of mobile laboratories or imported equipment have had their share of challenges such cost of implementation, ease of use and adaptation to the local environment. Other available solutions including taking soil to laboratories for testing is tedious, time consuming and inconsistent. This study proposed development of an ANN model that predicts NPK nutrient levels and recommends the best fertilizer remedy and application time based on the weather forecast. This involved use of IoT, machine learning techniques and a weather API through RAD methodology and experimental research design. Historical data of temperature, PH and NPK from KALRO Library was used to train and validate the model. The developed model achieved an RMSE 0.5 with 75% of data used for training and 25% used for testing. This is in effort to encourage precise fertilizer production for particular areas of need.

There are no comments on this title.

to post a comment.

© Strathmore University Library Madaraka Estate Ole, Sangale Road P. O. Box 59857 00200 City Square Nairobi Kenya
Tel.: (+254) (0)703 034000/(0)703 034200/(0)703 034300 Fax.: (+254) (0)20-607498