Normal view MARC view ISBD view

A Fraud investigative and detective framework in the motor insurance industry : a Kenyan perspective George Ngosiah Kisaka

By: Kisaka, George Ngosiah.
Contributor(s): Onyango-Otieno, Vitalis (Prof.) [Supervisor].
Publisher: Nairobi Strathmore University 2012Description: xi, 66p.Subject(s): Automobile insurance--Kenya | Traffic accidents--Kenya | Insurance fraud--KenyaOnline resources: Click here to access full text thesis online Summary: Insurance fraud is a serious and growing problem, with fraudsters’ always perfecting their schemes to avoid detection by the basic approaches. This has caused a rise in fraudulent claims that get paid and increased loss ratios for insurance firms thereby diminishing profitability and threatening their very existence. There is widespread recognition that traditional approaches to tackling fraud are inadequate. Studies of insurance fraud have typically focused upon identifying characteristics of fraudulent claims and putting in place different measures to capture them. This thesis proposes an integrated framework to curtail insurance fraud in the Kenyan insurance industry. The research studied existing fraud detection and investigation expertise in depth. The research methodology identified two available theoretical frameworks, the Bayesian Inference Approach and the Mass Detection Tool (MDT). These were compared to comprehensive motor insurance claims fraud management with respect to the insurance industry in Kenya. The findings show that insurance claims’ fraud is indeed prevalent in the Kenyan industry. Sixty five percent of claims processing professionals deem the motor segment as one of the most fraud prone yet a paltry 15 percent of them use technology for fraud detection. This is despite the fact that significant strides have been made in developing systems for fraud detection. These findings were used to determine and propose an integrated ensemble motor insurance fraud detection framework for the Kenyan insurance industry. The proposed framework built up on the mass detection tool (MDT) and provides a solution for preventing, detecting and managing claims fraud in the motor insurance line of business within the Kenyan insurance industry.
List(s) this item appears in: STRATHMORE THESES & DISSERTATIONS
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due
Thesis Thesis Strathmore University Library
Special Collection
Special Collection HG9970.3.K57 2012 Not for loan
Thesis Thesis Strathmore University Library
Special Collection
Special Collection HG9970.3.K57 2012 Not for loan
Thesis Thesis Strathmore University Library
Special Collection
HG9970.3.K57 2012 Not for loan

A thesis submitted to Strathmore University in partial fulfillment to the requirements of the award of Master of Science in Information Technology (MSIT).

Insurance fraud is a serious and growing problem, with fraudsters’ always perfecting their schemes to avoid detection by the basic approaches. This has caused a rise in fraudulent claims that get paid and increased loss ratios for insurance firms thereby diminishing profitability and threatening their very existence. There is widespread recognition that traditional approaches to tackling fraud are inadequate. Studies of insurance fraud have typically focused upon identifying characteristics of fraudulent claims and putting in place different measures to capture them. This thesis proposes an integrated framework to curtail insurance fraud in the Kenyan insurance industry. The research studied existing fraud detection and investigation expertise in depth. The research methodology identified two available theoretical frameworks, the Bayesian Inference Approach and the Mass Detection Tool (MDT). These were compared to comprehensive motor insurance claims fraud management with respect to the insurance industry in Kenya. The findings show that insurance claims’ fraud is indeed prevalent in the Kenyan industry. Sixty five percent of claims processing professionals deem the motor segment as one of the most fraud prone yet a paltry 15 percent of them use technology for fraud detection. This is despite the fact that significant strides have been made in developing systems for fraud detection. These findings were used to determine and propose an integrated ensemble motor insurance fraud detection framework for the Kenyan insurance industry. The proposed framework built up on the mass detection tool (MDT) and provides a solution for preventing, detecting and managing claims fraud in the motor insurance line of business within the Kenyan insurance industry.

There are no comments for this item.

Log in to your account to post a comment.

© Strathmore University Library Madaraka Estate Ole, Sangale Road P. O. Box 59857 00200 City Square Nairobi Kenya
Tel.: (+254) (0)703 034000/(0)703 034200/(0)703 034300 Fax.: (+254) (0)20-607498

Powered by Koha